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Schur-0Ostrowski Theorems for Functionals on Ll(O,l) b

by

Wai Chan, Frank Proschan, and Jayaram Sethuraman

ABSTRACT

Hardy, Littlewood and Pdlya (1934) introduced the partial

ordering of majorization among n-dimensional real vectors. Many
well known inequalities can be recast as the statement that certain
functions are increasing with respect to this ordering. Such
functions are said to be Schur-convex. An important result in the
theory of majorization is the Schur-Ostrowski Theorem, which char-
acterizes Schur-convex functions. The concept of majorization has

been extended to elements of L,(0,1) by Ryff (1963). A functional

on Ll(O,l) that is increasing with respect to the ordering of
majorization is said to be Schur-convex. In this paper, we prove 5€:kﬁ
an analogue of the Schur-Ostrowski condition which characterizes :G%?ﬁ
Schur-convex functionals in terms of their Gateaux differentials. S
We also introduce another partial ordering in Ll(O,l) called

unrestricted majorization. This partial ordering is similar to

majorization but does not involve the use of decreasing rearrange- -

ments. We establish a characterization of non-decreasing functionals

on Ll(O,l) with respect to the partial ordering of unrestricted

majorization through another f¥ﬁ¥%&%i6¥;£%$ Schur-0Ostrowski LOﬂdlthﬂ
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b 1. Introduction.

- Hardy, Littlewood and Polya (1934) introduced the following

-j . partial order in n-dimensional Euclidean spaces: a n-vector 5==(x1....xn)
o m_ .
h‘ majorizes y = (yl,...,yn), {(x 2 y in symbols), whenever

and

where x*, y* are the vectors obtained from x and y by rearranging
their components in decreasing order.

This partial order has been extended to elements of Ll(O,l) by
Ryff (1963) and is given in Definition 1.2 below. Before giving this
definition, we develop some notation to be used in defining a decreasing
rearrangement of a function. Let x be a measurable, real valued function
on (0,1) and m be the Lebesgue measure. For each x, one can associate

a function dx on (-»,») defined by

dx(s) = m({t: x(t) > s}), -®» < § < o,

This function dx’ called the distribution function of x, is non-increasing
and right continuous. Two functions x and y are said to be equivalent in
distribution if dx = dy. The right continuous inverse of dx’ denoted x*, ;}}

is defined by

x*(t) = inf {s: dx&s) < t).

The function x*, which is non-increasing, right continuous and has the
same distribution function as x, is called the decreasing rearrangement

of x. The functions x and x* are simultaneously integrable (or non-

integrable), and their integrals are related by

et e e e e e T e e e T
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S 5
J x*(t)dt 2 [ x(t)dt 0 s <1,
0 0
and 1 1
J x*(t)dt = [ x(t)dt.
0 0

The following theorem due to Ryff (1970) shows that by composing
the decreasing rearrangement of a function with a measure preserving

transformation, one can recover the original function.

1.1. Theorem. To each x ¢ L1(0,1), there corresponds a measure pre-
serving transformation o: (0,1) + (0,1) such that x(t) = x*[o(t)],
where o is defined by

x(t) = x(s)} .

o(s) = m{t: x(t) > x(s)} + m{t < s:

The definition of the partial ordering of majorization of elements

in Ll(O,l),due to Ryff (1963), is given below.

1.2. Definition. Let x, ye¢ Ll(O,l). We say that x majorizes y,

m
{(x z y in symbols) if

S S
[ x*(t)dt 2 [ y*(t)dt, 0<s <1,
0 0
and
1 1
[ x(t)dt = [ y(t)dt,
0 0

where x* and y* are the decreasing rearrangements of x and y, respectively.
Several authors [see, eg. Day (1973}, Chong (1976) ] have obtained
interesting results using this partial ordering. It is also related to the
variability ordering of Ross (1982).
By removing the rearrangement requirement in Definition 1.2, we

obtain a different ordering called unrestricted majorization, as defined

below.
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1.3. Definition. Let x, y ¢ Ll(O,l). We say that x dominates y in

the ordering of unrestricted majorization, (x 3 y in symbols), if

S S
[ x(t)dt = [ y(t)dt, 0 s s <1,
0 0
and 1 1
[ x(t)dt = [ y(t)de.
0 0

The ordering of unrestricted majorization as applied to the
class of density functions leads to the usual stochastic ordering
as seen below:

Let X and Y be random variables on (0,1) with densities f and
g respectively. If f 2 g, then 7 f2 7 g for all 0 <s <1, or
P(X < s) 2 P(Y 2 s). Thus the cgnditign X < Sty is equivalent to
f g g.

Many inequalities that arise from majorization in the finite dimen-

sional case can be extended for elements of Ll(O,l). Ryff (1967)

proved the following analogue of Muirhead's inequality.

1.4. Theorem. Let x and y be bounded measurable functions on (0,1).

m
If x 2y and u is a positive function such that u ¢ Ll(O,l) for all

1 1 x(s) 1 1 (s)
P, -® < p < =, then f log[f u(t) dtlds 2 f log[f u(t)y $)dt 1ds.
0 0 0 0

n
Conversely, if the inequality holds for all such u, then x 2 y.

In the discrete case, Muirhead's inequality can be reformulated
by identifying an appropriate function which preserves the ordering
of majorization. Such functions are said to be Schur-convex. Schur

(1923) and Ostrowski (1952) gave necessary and sufficicent conditions

.........
. e




for a function to be Schur-convex in terms of their partial deriva-
tives. We quote from Marshall and Olkin (1979) about the importance

of this result, "it is difficult to overemphasize the usefulness of Sl

Lt . the (Schur-Ostrowski) condition, ...., many or even most of the "
i theorems giving Schur-convexity were first discovered by checking ;Tﬁ
(the Schur-Ostrowski condition).'" In the next section, we will

present an analogue of this result for Schur-convex functionals on

Lo(0,1). This result, given in Theorem 2.9, is then used to charac- .

BY

terize Schur-convex functionals on LI(O,I). We also characterize

non-decreasing functionals on Ll(O,l) with respect to the partial
‘e ordering of unrestricted majorization through another analogue of -
»

the Schur-Ostrowski condition. These results will be used to prove
the generalized Muirhead's Theorem (Proschan and Sethuraman, 1976)
in Section 3. An application to peakedness comparisons of distributions

is discussed in Section 3.

2. Main Theorems.

il We first proceed with some definitions.

2.1. Definition. A functional ¢ defined on a set A € Ll(O,l) is

m
said to be Schur-convex on A if Yi» ¥y € A and Yy 2 Y, imply that
> ¢(Y1) z ¢(Y2)-

A Schur-convex functional is necessarily constant over functicas

that are equivalent in distribution. Thus for a Schur-convex
D_ functional ¢, the value ¢(x) depends only on the distribution -

function of x. A set A is said to be invariant if x ¢ A and x and

N y are equivalent in distribution imply that y ¢ A. Henceforth, we
!f ) shall only consider Schur-convex functionals on an invariant set. -
4ﬂ' For a characterization of Schur-convex functionals, we need

the following notion of directional derivative.
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2.2. Definition. Let ¢ be functional defined on a convex set

nn

A Ll(O,l). Let y ¢ A and h be such that y + 6h « A for all sufficiently
small 6. The Gateaux differential of ¢ at y in the direction of h is

defined to be

39 s ¢(y+eh) - ¢(y)
3hY) = éi'(')' 6

if the limit exists.

Note that %%{y) is simply the derivative, at 8 = 0, of the real
valued function on [0,1] defined by y(8) = ¢(y+6h).

Let Dl be the c¢lass of decreasing functions in LI(O,I), let D
be the class of decreasing functions in L_(0,1). Let

T =1{h: h= AII(a,b) + AZI(c,d)’ where 0O<a<b<c<d<], Alezxz,

Al(b-a) + Az(d-c) = 0}. The class T consists of step functions h

which take at most two non-zero values, are decreasing on its support

1
m
and satisfy f h(t)dt = 0. Note that h ¢ T implies h = 0.
0

Let y ¢ D, and h ¢ T. Then y + h need not be decreasing. However,

1
m s .

we have y + h 2 y, as given in the next lemma.
m

2.3 Lemma. Let y ¢ Dl and h ¢ T, theny + h 2 y.

Proof.
Note that
s [
] (y+h)* = [ (y+h)
0 0
S s
=[y*+[h
0 0
$
2 [ y*, 025 <1
0
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and
y.

Oy

1 1 1
j (y+h) = f y + f h =
0 0 0

m
Hence, y + h 2 y. ||
In the following Theorem, we give a necessary condition for
functionals increasing in the ordering of unrestricted majorization.

2.4, Theorem. Let A be an open subset of Ll(o,l). Let ¢ be a

functional defined on A such that ¢ is non-decreasing with respect

to the ordering of unrestricted majorization. Let y ¢ A and h ¢ T,

Suppose that the Gateaux differential %%(y) exists. Then %%(y) 2 0.

o Proof.
ki" Since A is open, y +6h € A for all sufficiently small 6. Thus
for all sufficiently small positive 6, y + 6h and y are elements of

Aand y+6h ¥ y. This impliés that

¢(y+6h) 2 ¢(y)
and
3¢ .1
2-(y) = lim =[¢(y+6h) - ¢(y)]
ah 840 6
20. ||

Next, we consider Schur-convex functionals defined on an

invariant set A,
2.5. Theorem. Let A be an open invariant subset of Ll(O,l). Let

¢ be a Schur-convex functional defined on A. Let y ¢ D_ n A and
h ¢ T. Suppose that the GAteaux differential %%{y) exists. Then

—g%(y) 2 0.




Proof.

Since A is open, y + 6h ¢ A for all sutficiently small 6.
Furthermore, for sufficiently small positive 6, y + 6h g y from

Lemma 2.3. Hence ¢(y+6h) 2 ¢(y) and
2(y) = Lim gle(y+en) - ¢()]
6+0
20. ||

To show that this condition is also sufficient, which is the
content of the main theorem, Theorem 2.10 of this section, we need

the following lemmas.

2.6. Lemma. Let A be a convex subset of Ll(O,l). Let ¢ be a
functional defined on an open set containing A. Let %%(y) 2 0 for
y e Aand h € T. Then Yi» ¥p € A and Yy -y € T imply that

4(y,) Z 80y

Proof.

Let h = y,-y, € T. For 8 ¢ [0,1], define
Yo = ¥y * 0lypoyy) = 8y, + (1-8)yy,
and
v(8) = 8(yg)-

Note that y, is in A. Now,

£9(0) tin Liycore) - (o]
= ,1;1'3 %w(ye«seh) - ¢(Ye)]

=3
= ah(ye) 20 for0<#9<1l.

Y




‘; . Hence, T

1
O

d
a§¢(e)de

1
3
(I) Slyg)de 2 0. |

In the next lemma, we show that if Yy ¥, are step functions
such that Yy ¥ Yy then Y, -y, can be written as the sum of

functions in T.

2.7. Lemma. Let y,, y, be step functions on (0,1) such that
— 1 2

Y, ¥ Yy Then there exist hl’ ..., h, in T such that

N
N -
(2.1) Yy =¥y * z h.. e

Proof. There is nothing to prove if Yy = Yspe

Let Yy * Yy Since Y1 and y, are step functions, there is an

integer n 2 2, such that

e

y,(8) -y (8) =

laiI(c.,d.)(t) where a, 20,
i’hi

(ci’di) are disjoint intervals and 0 < ¢, < d, < <c < dn <1,

1 1 e n
Note that Y, b3 Y1 implies that a, > 0 and a, < 0. We will prove
that (2.1) holds with N < n-1, by an induction on n.

Note that the lemma is immediate when n = 2. Assume that the

lemma is true for n = 2, ..., k-1. We will now prove that the lemma




. holds for n = k. Let aj be the first negative term such that either

a >0or j = k. Define a function in T by

i+l
h =a.l -~ +a.l, .. ,
17(c;,¢9) j (dj.dj)

;S ;2 c. ‘- (d.-d?) =
where ¢ d1 and dJ cJ are chosen so that al(cl cl) + aJ(dJ dJ) 0

S 1

E:: and one of the following holds:
1) ¢f = d1 and dj = cj if al(dl—cl) + aj(dj-cj) =0,
2) ¢l < d1 and dj = Cj if al(dl-cl) + aj(dj-cj) >0,
3) ¢ =4d, and d; > ¢, if a,(d,-¢c,) + a.(d.-c.) < O,
) 1 j j 10d;-¢) J( j J)

We will now establish that Yo b yl-oh by showing that

s

f (Yz-yl-h) 20 for all 0 < s < 1. Note that h = 0 on the interval

0

d.,1).

J s 1

Let s > d., then f h=/h=0. Thus,
J 0 0

S S
[ (yy-y{-h) = [ (y,-y,) 2 0.
5 2 RS

let 0 < s £ dj' Then either yz(t) - yl(t) z 0 for all

0 <t <sor yz(t) - yl(t) <0 for all s <t < dj’ since there is

only one sign change among 3y, e aj and the sign changes from

positive to negative. Note that h agrees with Y, -y on the -
;f . intervals (cl,ci) and (d;,dj), and that h is identically zero .'f
L RS
. oo

outside these intervals.
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1f yz(t) - yl(t) 2 0 for all 0 < t < s, then Yo - Y 2hz20

on the interval (0,s). This implies that

S
g (y,-y,-h) 2 0.

If yz(t) - yl(t) < 0 for all s < t < dj’ then Yy - ¥ <hz<0

on the interval (S,dj). This implies that

] Tf
(f) 02y 0 2 [ rpyyh)

7
= [ (y,-y,)
0 271
2 0.

Hence we have Ya g yli-h. Since Yo - Yy - h is a step function
which takes at most k-1 nonzero values, it follows from the

N

induction hypothesis that Yo - ¥ - h= ] h{ where h{ e T for
i=1

i=1, ..., N, and N € k-2. This completes the proof. ||

In Lemma 2,7, if we assume that Yy» ¥, arve decreasing step

functions, then the condition Yy 3 Y, is equivalent to Yy § Yy In
N-1
addition, we can choose y1+h1, yl#h1+h2, cees yl+izlhi to be de-

creasing functions as shown in the following lemma.

2.8 Lemma. Let Yyr ¥ be decreasing step functions on (0,1) such

that y, ? y,- Then there exist hl’ cees hN in T such that




Y

.......
.t

N-1
ii) y1+hl, ceey y1+.21hi are decreasing functions.
1=

Proof.

Define h = a ajI(d’ d.) as in the proof of Lemma

1 YR -
1 (cl,cl)
2.7. VWe need to show that Y1 +h is decreasing. Note that

f
yz(t) if 0<t«< cl,
yl(t) if cf <tsd?,
y,(t) + h(t) = J
t if df <t<sd.,
y,(t) j j
Lyl(t) if d;<tel,

Since a > 0, yl'fh is decreasing on a neighborhood of c{.
Similarly, aj < 0 implies that yl-*h is decreasing on a neighborhood
of dj. Suppose that dj < 1, then the choice of aj indicates that
for € > 0 sufficiently small, Yo - Y 2 0 on (dj’ dj+e). Since

Y1 + h = y, on (dj’dj]’ it follows that y1-+h is decreasing on the

interval (d5, dj+c). Thus yl-+h is decreasing on the interval (0,1).

Note that h ¢ T implies Yy +h ¥ Yy- Since y1~+h, y, are de-
creasing functions, this is equivalent to yl-Oh 2 Yy Following

the same induction argument as in Lemma 2.7, we conclude that

there exist h,, ..., h, in T such that y, = y. +h+ Z h; and that
1 N-IN 2 1 jo1 1
y1+h+h1, ey y1+h# z hi are decreasing functions. This proves the
i=1

lemma. ||

................
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In the next theorem, we give a sufficient condition for a

functional of Lw(o,l) to be Schur-convex.

2.9, Theorem. Let A be an invariant open convex subset of L_(0,1). R

Let ¢ be a continuous functional defined on A such that ¢ is constant
over functions that are equivalent in distribution. If the Giteaux
differential %%{y) 20 for eachy e D_n A and h € T, then ¢ is -

Schur-convex on A.

Since ¢ is constant over functions that are equivalent in .
distribution, it suffices to prove that ¢ is Schur-convex on Dw nA,
Let y,» ¥, € D_n A be right continuous and Y, ? y,- let e >0
be arbitrary, Then for i = 1, 2, the sets {t: yi(t') -yi(t) >¢} are o

: finite, where yi(ta) = inf yi(t). Hence there exists a partition

5 t<t

- . 0 .
- 0 <a; <... <a < 1 such that ——

yi(ak) - yi(ak+l) <eg, 1=1,2; k=1, ..., n-1,

- Define

3

y; () = a‘—l EACLILIIG =

nil akfu -
+ e y.(s)ds|I (t) )
k=1 ®ke1 "% | a, " [2y:241) e

;{ 1 .
. * + —1—.1-3— [j yi(S)dS:lI[a '1) (t) ’ is= ln 2. -—
n an n Lt
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Then Yie» Y2 aTe decreasing step functions satisfying

A "
gyie(s)ds = gyi(s)ds for k =1, ..., n. This implies Yoe g Yie®

Since A is open and Ilyi-yiell°° < €, for sufficiently small positive

€, ¥).» Yy aTe in A, N
) h, for some {h,...,h} cT,
i=1

By Lemma 2.8, Y2e " Y1e
N-1
where y1£+hl, cees Yyt X hi are decreasing functions. The functions

i=1
N-1
Yiethys oo ¥t ) h; need not be elements of A. Since A is open,
i=1 N
1* e yle+6.z hi are

for sufficiently small positive 6, ylc+6h
i=1

decreasing functions in A satisfying

N N-1
Y1e*® ) hi ? ylc*e I h, 2...% Yje+ It now follows from Lemma 2.6
i=1 i=1 '
N-1

N
that ¢(Y1e*Bizlhi) 2 ¢(Y15*ei§lhi) 2 ... 2 °(ylc)' Next, we shall
show that this implies ¢(y2€) 2 ¢(yl€). Note that we have just
N
demonstrated that the set 0 = {0s6<1: o(ylelre z hi) 2 ¢(y1€)} is
i=1

non-empty. Let 90 = sup{06: 8e€0}. Since ¢ is continuous, we have

©. Now suppose

N
0(yyc * € iZlhi) 2 ¢(y,.)» which shows that 8, e

8y < 1. The preceding arguments show that for sufficiently small
N N N

positive r, y, +86, ) hy+xh, ooy ¥y 48 ) hy+r ) h, are
i=1 i=1 i=1

decreasing functions in A and satisfy
N N
iy * 8 I h) sely; +05 Lhyerh) s ...
i=1 i=1
N N
<oy, .+ Yh.+r J h.). Thus 8, +r e 0, which provides a
e 0 j=1 1 i

i=1 0

K
L an g



contradiction to the assumption that 60 < 1. We therefore conclude

that 90 = 1 and thus, ¢(y2€) 2 ¢(y1€).
Since the functional is continuous with respect to L_-norm,

we conclude that ¢(y2) 2 ¢(y1) by letting € » 0. ||

We now use this theorem to establish a sufficient condition

for Schur-convex functional of Ll(O,l).

2.10. Theorem. Let A be an invariant open convex subset of Ll(O,l).
Let ¢ be a continuous functional defined on A such that ¢ is constant
over functions that are equivalent in distribution. If the Giteaux
differential %%(y) 20 for eachy e D_nA and h € T, then ¢ is

Schur-convex on A.

Proof.
Since ¢ is constant over functions that are equivalent in
distribution, it suffices to prove that ¢ is Schur-convex on Dl nA.

Let Yi» ¥p € D. n A be right continuous and Y, 3 2% Let € > 0

1
be arbitrary, then J 6 > 0 such that

8 1
[y, (t)]at <§ and [ |y (t)]dt < -j- i=1, 2.
0 1-6

Since the yi's are in Dl, they are bounded on the interval (6§, 1-6].

Define
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8
) Yie(t) %Lf)"i(s)ds}(o,c) ORS AN TR

1
1 { =
+ E[lfﬁyi(s)ds]r(l_a’l)(t), i=1,2.

Then Yie € D,i

1, 2 and Y2e g Yie- We also have

1
{ lyic_yi| <e, i=1, 2.

)
")’ie')’inl = ({ly1e'y1| +

1-6
s;f Hence, for sufficiently small e, y. ¢ D_n A, It now follows

a from Theorem 2.9 that ¢(y2€) 2 ¢(y18). Since ¢ is a continuous

= functional, we obtain that ¢(y2) 2 ¢(y1) by letting € = 0. This

completes the proof. ||

The following lemma is used to prove Theorem 2.12, which is
S an analogue of Theorem 2.10 for functionals on Ll(O,l) which are
non-decreasing with respect to the ordering of unrestricted

majorization.

2.11 Lemma. Let Yi» ¥y € Ll(O,l) such that Y, ¢ Y, For each
g € > 0, there exists a partition 0 < a; < ... <a <1 such that the 1
step functions defined by

a E
Lt T
»
n-1 a e
] k+1 O
Lo | s
; k=t Pker " H fa et i
g _ : - ;
. 1
. N f y (s)ds| 1 (t) i=1,2 T
) l-a n Ia ’1) ’ ’ ’ ._.»J
‘. nla n -

e satisfy the following:




and

(1) yp, 2 ¥y

Note that if Yy, ¥, are continuous functions on the interval
[0,1], then (i) follows from the uniform continuity of Yy and Yy
- If yi's are not continuous on [0,1], we first approximate yi's by
continuous functions x, on [0,1] such that ||yi-xi||1 < §3 i=1, 2.

[tl Next, we find a partition 0 < a, < ... <a <1 such that the step

o functions defined by

4

1
x; (1) = q (f)xi(s)ds I(o’al)(t)

i1 ) ak!u
—_— X, (s)ds|I
=1 2k+17% a, 1

1
Lf xi(s)d{lllan’l)(t), i=1, 2

n

n
+ y (8

= k (3841

+

1
1-a
n

. €
satisfy leie°xilll <3 .

Now, define the step functions Yier Y2e by

f;: a -
1| f -4
e Yie(t) = a-| [ y;(s)ds To,a)®) e
: 1/ 0 1
o nil 1 akju R
o o 1 —— | y.(s)as]1 (+ Y
c- k=l %ke1"%] a, [3y844p) —

1
1 l -
* T ]yi(s)ds]llan’l)(t), i=1, 2.

nLa

n
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Then
1 - 7
:- ly;,-x;, 1l = ]({(yi(s)-xim]as
. n-1,%+1
: + [ lys(s)-x(s))ds
1 1l gy
1
+ f[yi(S)-xi(S)]ds
n
a
< llxgeylly, 6=, 2.
‘ Thus
.
) "yi-yielll s ||Yi-xi||1 + ”xi-xielll + "xie—yiclll
- EaEafoe, -
) < T3 + 3=€ 1= 1, 2.
o~
a
Ej This proves the first part of the lemma.
\ Let Yy ¥ Y1 Then for any partition 0 < a, <...<a < 1,
™ . . v .
i! the step functions Yie* Y2e satisfy that Yoe 2 Yie: This proves
- G- |l
:; 2.12 Theorem. Let A be an open convex subset of LI(O,I) and let
D
- ¢ be a continuous functional on A such that the Giteaux differentials -
lf-_' kL3 .
% H(Y) 20 forye A and h € T. Then Yy» Yy € A and Y, ¥ y, imply ffi
that ¢(y,) 2 ¢(y,). ]
_D; - o
R
- Proof. =
4 :k\:l
; We shall first prove the theorem for step functions. Let iiﬁf}
b. ) yy» ¥, be step functions in A and y, s y,- Then by Lemma 2.7, __“i
N S

Y-y * izlhi for some {h;,...,h} £ T. Since A is open, for
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N
sufficiently small positive 6, y1+6hl, cens y1+e Z hi are functions
. i=1
. in A and satisfy that
N y N-1 y y
: Y + Bizlhi Yy + eizlhi el 2 Yy ¢ Ohl Yy

It now follows from Lemma 2.6 that

N
¢(y,+0 ) h;) 2 ... 2 ¢(y;+6h)) = ¢(y,). Define

i=1
N
: 0={0<08<1: ¢(y1+e ) hi) 2 ¢(yi)} and eo = sup{6: 8¢ 0}.
i=1
Following the same argument as in the proof of Theorem 2.9, we
' can show that eo = 1. Hence,
J
' N
0(yy) = ¢(ry+ I h) 2 60yp).
i=1
il In general, let Yy» Yy € Ll(o,l) and Y, ¥ Yy: Let € > 0.
By Lemma 2.11 there exist step functions Yie* Y2¢ such that
"yic'yilll <efori=1,2andy, g Y- Since A is open, for
- sufficiently small €, Yier Yo 2T€ functions in A. Thus

¢(y2c) 2 Q(ylc). Since ¢ is continuous, we conclude that

¢(y,) 2 ¢(y,) by letting € + 0. Il

»
P
o 5. Applications.
k; The inequality given in Theorem 1.4 can be reformulated as the
&: statement that the functional defined by .
= L1 2
L-‘. - . u
R $(x) = J loglf u(e)*atids -
b -
- 0 0 ]
o N
K is Schur-convex. By Theorem 2.10, this is equivalent to the condition s
%%(x) >0y xe D, VheT. This condition can be verified as follows. :?;i
o)
.
.:-.'w
L -
.

i
P
dinadn




v ———

19

Using lHlolder's inequality, wec note that the function

M(a) = logHtﬂ\E is convex in a, and thus

1 1
M- (x) = [ u(t)® log u(t)dt/ [ u(t)%dt
0 0

is increasing in a. Let xeD_and h ¢ T, then both x and h are
functions decreasing on their supports, and } h(t)dt = 0. This

0
implies that

u(t)x(s)log u(t)dt

(= e Yand

. h(s)ds 2 0.
Ju)*®lar
0

More generally, we can replace the function u(t)x(s) by

functions of the form ¢(t,z) which are log convex in z for fixed
t. This is the result of Proschan and Sethuraman (1976), which

we will state below.

3.1. Theorem. Let the function y(t,z) on (0,1) x (-»,») be a log

convex function in z for fixed t, and the partial derivative

wz(t,z) = g%w(t,z) exists. Also let STP ¢(t,z) belong to LI(O,I)
z|sk

for each k < », For any bounded measurable function x on (0,1),

define

1 1
Mw(x) = f log[fw(t,x(s))dt:lds.
0 0

Then M, is Schur-convex.
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Proof.

Il . If follows from Artin's Theorem (1931) that the positive linear
s combination f v(t,z)dt is log convex in z. Let x ¢ D, and h ¢ T, then
o 0

1
K aM v, (t,x(s))dt

Yy = {2 h(s)ds 2 0,
| 3h ol 1

= v(t,x(s))dt

: 0

1

which implies that M is Schur-convex. ||

v
Next, we shall study an application of unrestricted majorization
b to peakedness ordering of symmetric distributions.
Let X and Y be random variables possessing densities symmetric
about zero. According to the definition of peakedness given by
ii Birnbaum (1948), X is more peaked than Y, (X g Y in symbols), if
3:: P(X £ t) 2P(Y st) forall t 2 0. Let f and g be the densities of
‘ X and Y respectively. Then the condition X g Y is equivalent to
£ 5 g on the interval (0,«).
Birnbaum (1948) showed that under appropriate conditions,
Y, and X g Y, imply that X, + X, g Y1 + Y,. This result can

1 1 2

be obtaired by considering certain order preserving functionals. We S

first introduce some simplifying notations. T
For s > 0, define -

X (¥) = I(|x] <s)
and, for a symmetric function h, define

h(s,x)

(h*xg) (x)

[h(x-y)x (y)dy, tflﬁ
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. and
h(s,0) = [h(-y)x (y)dy
= fh(y)xs(y)dy.
s Note that
ﬁgz . %[h(x+s,0) - h(x-s,0)] is s < x,

h(s,x) = {%[h(x+s,0) + h(-x+s,0)] if -s € x < s,

%(h(-x+s,0) - h(-x-s,0)] if x < -s.

We need the following lemma.

3.2, Lemma. Let C = {h: h symmetric and h(s,0) z O for all s > O},

Let g be symmetric and decreasing on (0,=). Thenh xg+ C for all
ho C,i.c, (hegex,)(0) = 0 for h e Cand s > 0.
Proof.

Let h € C and s > 0. Then
(hegex ) (0) = [(h*x ) (x)g(-x)dx
= fh(s,x)g(-x)dx

= »,{ [ [h(x+s,0) - h(x-s,0)]g(x)dx
X>Ss

+ [ [h(x+s,0) - h(-x+s5,0)]g(x)dx
-G<X<S

+ [ [h(-x+s,0) -h(-x-S.O)]g(x)dx}
X<-S

= %[:f h(x+s,0)g(x)dx + f h(-x+s,0)g{x)dx
x

>-5 X<s

- | h(-x-s,0)g(x)dx - fh(x-s,O)g(x)dx].

X<-§ X>s

........................................
..............................




1}

Let y = x+s in the first integral, y = -x+s in the second integral

n

Y = -X -5 in the third integral and y = x-s in the fourth integral.

We get

(hegex,) (0) = %LI h(y,0)g(y-s)dy
>0

+ [ h(y,00g(-y+s)dy - [ h(y,0)g(-y-s)dy
y>0 y>0

- J h(y,O)g(y+s)dy:l.
y>0

By the symmetry of g,

(hxgx ) (0) = foh(y,O)[g(y-SJ-g(y+5)]dy-
y)

Since h(y,0) 2 0 for all y > 0, and g(y-s) - g(y+s) 2 0 for y >0

and s > 0, we conclude that (h+gsx_}(0) 2 0. I
We may now obtain the following result.

3.3. Theorem. Let Xl, X2, Yl’ Y2 be independent symmetric random

variables on (-1,1) with densities fl’ f2' Bys 8y respectively.

Let fl’ g, be non-increasing on (0,1). Let Xi g Yi’ for i =1, 2.
P

Then X1+X2 > Y1+Y2.

Proof.

We will first establish that X1+ X2 § Xl*-Yz.

Fix fl' For each f ¢ Ll(O,l), let fS be the symmetric function

on (-1,1) defined by

f£(t) = £(|t]).

-

........
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For each s > 0, define a functional on Ll(O,l) by

t
l

¢, () = [T x +x,] s )£ (x) ) £g (x,)dx, dx,).

Let T(0,1) be the class of nonnegative functions u on (0,1) with i;:ﬁ

1
[u(t)dt = %n Note that for f ¢ T(0,1),
4]

i
Y YU SO S

¢ (£) = P(|x;+z] s5),
where Xl, Z are independent random variables with densities fl’ fS ] )
respectively. ] 1

We shall show that for each s > 0, ¢S is non-decreasing with

respect to the ordering of unrestricted majorization on T(0,1). Let

s > 0. Let f e T(0,1) and h ¢ T. Then,

9¢ T
S T | R
Tﬁr(f) = éig 5 ffl({x1+x2[$ s){fl(xl)[fs(x2)+ ehs(xz)] -
- fl(xl)fs(xz)}dxldx2
= ffl(lxl+x2|s s) £, (x;)hs(x,)dx, dx, ;;ggm
= (£,*hg*x.) (0).
Since h e T, hs(t,O) 20 for all t > 0. By Lemma 3.2, ]
(fl*hs*xs)(O) 2 0. It now follows from Theorem 2.12 that ¢s is ]
D
nondecreasing with respect to the ordering of unrestricted ,
majorization on T(0,1). 2
-
Note that Xz g Y2 implies that f2 ¥ g, when these are con- -j}ﬂ
sidered as elements of T(0,1). We now have _fa?
PIX #X,| s8) = ¢_(£)) - =

L")

¢, (8,)

P(|x1+Y2| <s), for all s > 0.




*_‘ Thus X, + X g X, +Y,. Similarly, we can establish that

17% 254 +1 -
P P e
B Xp+Y, 2 Y+ Y,. Hence XpeXy 2 Y, +Y,. I
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